

# Vermilion Bay Drinking Water System 2018 Annual Report

### Introduction 2 **System Description** 3 **System Expenses** 4 **Water Quality** 5 **Flows** 7 Chemicals 9 Compliance 10 **Appendix A: Water Quality** 12 **Appendix B: Flow Statistics** 14 Appendix C: AWQIs 15



### **INTRODUCTION**

The Vermilion Bay Drinking Water System (DWS# 210000997) is obligated to meet the requirements of Ontario's *Safe Drinking Water Act* and the regulations therein, in addition to requirements associated with system approvals.

This Annual Report has been prepared in accordance with both Schedule 22 and section 11 of Ontario Regulation 170/03. In this manner, the Summary Reports for Municipalities required by Schedule 22 and the Annual Reports required by section 11 have been consolidated into a single document. This Report is intended to brief the Municipal officials and the residents serviced by the Vermilion Bay Drinking Water System (VBDWS) on the system's performance over the past calendar year (January 1, 2018 to December 31, 2018).

A summary of this Drinking Water System (DWS) is produced with the use of technical terms, some of which the reader may not be familiar with. It is recommended that the reader refer to the *Technical Support Document for Ontario Drinking Water Standards, Objectives (ODWS), and Guidelines.* Within this document the reader will find information on provincial water quality standards, objectives and guidelines, rationale for monitoring, and a brief description of water quality parameters. The Ontario Drinking Water Standards (ODWS) document can be found at the following website address:

#### http://www.ontla.on.ca/library/repository/mon/14000/263450.pdf

Users of this Drinking Water System are also encouraged to contact the Municipality of Machin through the OIC, if you have questions or if you require assistance in interpreting this Annual Report.

### **Report Availability**

In accordance with section 11 of O. Reg. 170/03, this Annual Report must be made available for inspection by any member of the public serviced by the Drinking Water System, without charge, at the Municipal Office. Additionally, the Municipality of Machin is also encouraged to make available this Annual Report on the community's website.

In accordance with Schedule 22 of O. Reg. 170/03, this Annual Report must be distributed to the members of the municipal council. As of January 1, 2013, section 19 (Standard of care, municipal drinking water system) of Ontario's *Safe Drinking Water Act* places certain responsibilities upon those municipal officials who oversee or exercise decision-making authority over a Municipal Water System. Such municipal officials would be exercising diligence by becoming familiar with this Annual Report.

### SYSTEM DESCRIPTION

Classified as a large municipal residential system, this drinking water system (DWS) provides a potable water supply to the community of Vermilion Bay. This DWS is composed of the Vermilion Bay Low Lift Pumping Station (VBLLPS), the Vermilion Bay Water Treatment Plant (VBWTP), and the Vermilion Bay distribution system. This DWS is owned and operated by the Corporation of the Municipality of Machin. Potential pathogenic organisms are removed from the source water by coagulation, flocculation, sedimentation, filtration, and primary disinfection processes.

The VBLLPS draws surface water from Eagle Lake, such that two low lift pumps are capable of transferring the raw water from the source to the treatment units located at the VBWTP. Lime solution (pH/alkalinity adjustment) and polyaluminum chloride (primary coagulant) are injected into the raw water upstream from the treatment units. A cationic polymer (flocculation aid) is then injected during the flocculation stage in order to create a strong and dense floc, which will facilitate settling in the sedimentation stage. In the sedimentation tanks, water flows upward through a maintained floc blanket and tube settlers and enters the perforated clarifier effluent pipe which directs flow to the filters. Any suspended particles that did not settle in the sedimentation tanks will be removed by two dual-media filters (composed of anthracite and silica sand, on a layer of support gravel). Filter effluent is then directed to a non-chlorinated reservoir for subsequent transfer through the GAC (granular activated carbon) filter units. Sodium hypochlorite (disinfectant) is then added to the GAC filter effluent water.

The chlorinated water is held in the treated water storage reservoirs to allow for the necessary time required to achieve primary disinfection. Treated water is then transferred to the distribution system by the use of high lift pumps located at the VBWTP. Secondary disinfection requirements in the distribution system are achieved by the maintenance of a residual as free chlorine.

# SYSTEM EXPENSES

### System Expenses

It is within the scope of this Report to describe any major expenses incurred during the reporting period to install, repair or replace required equipment. Such major expenses for the Vermilion Bay DWS include:

| ltem           | Description                                                                                    | Approximate<br>Cost | Status* |
|----------------|------------------------------------------------------------------------------------------------|---------------------|---------|
| March 1, 2018  | Process Flow Systems – Flygt pump (GAC)<br>repair                                              | 3643.00             | А       |
| March 5, 2018  | NWI – Repair on WW Pump                                                                        | 1331.72             | Α       |
| March 5, 2018  | Steven Blair Contracting – Excavation for hydrant line break in February                       | 3880.00             | Α       |
| April 26, 2018 | NWI – Replacement parts for chemical pumps                                                     | 4819.02             | Α       |
| May 2, 2018    | S&H Electrical – Replaced all exterior lighting                                                | 2009.38             | Α       |
| May 23, 2018   | Jim's Electrical – Lighting project – updated interior lighting with LED lighting- Hydro grant | 2920.00             | Α       |
| November, 2018 | NWI – 2 CL2 Pumps                                                                              | 5399.42             | Α       |
| November, 2018 | Spare Wastewater Pump                                                                          | 6948.48             | Α       |
| December, 2018 | Mi-Sask – Replacement parts for Aqua Flows                                                     | 3547.70             | А       |
| *A = Approved  | R= Rejected N = Not Yet Detern                                                                 | nined               |         |

### WATER QUALITY

The Vermilion Bay Drinking Water System continued to produce water of exceptional quality in 2018. The descriptions below provide brief summaries of the parameters tested in the VBDWS, and the reader is asked to consult **Appendix A** for a comprehensive summary of 2018 water quality.

### **In-House Analyses**

The Vermilion Bay DWS employs an extensive in-house testing program which includes analyses of water quality indicators beyond that required by Ontario's *Safe Drinking Water Act*. Such analyses are conducted on source, treated, and process water, and include testing for turbidity, colour, pH, temperature, alkalinity, aluminum, and residual free chlorine. Approximately 5404 routine independent in-house water quality tests were conducted with respect to this system in 2018.

### **Microbiological Analyses**

In 2018, as required by Schedule 10 of O. Reg. 170/03. These water samples were collected on a weekly basis, and included tests for E. coli, total coliforms, and heterotrophic plate counts. All routine treated samples tested were absent for E. coli and total coliform parameters.

### **Organic Parameters and Trihalomethanes**

Organic parameters are sampled on an annual basis in treated water in accordance with Schedules 13 and 24 of O. Reg. 170/03. These parameters include various acids, pesticides, herbicides, PCBs, volatile organics, and other organic chemicals. With respect to the Vermilion Bay DWS, sampling for organic parameters was conducted on February 12, 2018. The results of all organic parameter testing were below the lower detectable limits (with the exception of Trihalomethanes and HAA's).

Trihalomethanes (THMs) are sampled on a quarterly basis from the farthest point in the Vermilion Bay distribution system, in accordance with Schedule 13 of O. Reg. 170/03. Compliance with the provincial standard for Trihalomethanes concentrations is determined by calculating a running annual average (with a Maximum Acceptable Concentration of 0.100 mg/L or 100 ug/L). In 2018, the running annual average was 21.3 ug/L

Halo acetic acids (HAA's) are sampled on a quarterly basis from the nearest point in the Vermilion Bay distribution system, in accordance with Schedule 13 of O. Reg. 170/03. Compliance with the provincial standard for Halo acetic acid concentrations is determined by calculating a running annual average (with a Maximum Acceptable Concentration of 0.080 mg/L or 80 ug/L). In 2018, the running annual average was 25.0 ug/L

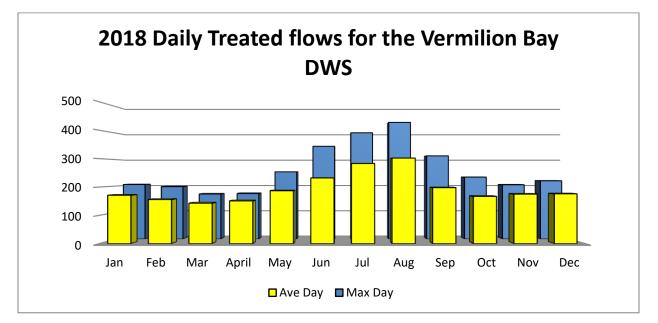
Microbiological analyses are conducted on source, treated, and distribution system water. A total of 227 routine water samples were collected for bacteriological analysis by an accredited laboratory

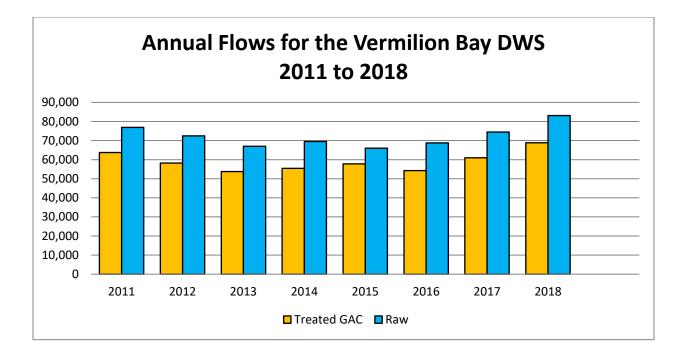
## WATER QUALITY (continued)

### **Inorganic Parameters and Nitrate/Nitrite**

Inorganic parameters are sampled on an annual basis in treated water in accordance with Schedules 13 and 23 of O. Reg. 170/03. Inorganic sampling includes various parameters such as Antimony, Arsenic, Cadmium, Mercury, and Uranium. With respect to the Vermilion Bay DWS, required annual sampling for inorganic parameters was conducted on February 12, 2018.

Treated water is also tested for nitrate and nitrite concentrations on a quarterly basis in accordance with Schedule 13 of O. Reg. 170/03. There was no exceedance for any inorganic parameter in 2018.


### **Community Lead Sampling**


In 2018 in accordance with Schedule 15.1 of O. Reg. 170/03, based on results of the community lead sampling program, the MOECC instructed the Vermilion Bay DWS that we are not required to take lead samples for this year. We were only required to measure Ph and alkalinity in the distribution system spring and summer period from two Hydrants at the ends of the distribution system.

### **FLOWS**

### 2018 Flows

Throughout the reporting period, the Vermilion Bay DWS supplied 71360 m<sup>3</sup> of treated water to consumers. On an average day in 2018, 195 m<sup>3</sup> of treated water was supplied to the community. This average daily flow rate in 2018 represented 14.3 % of the rated capacity of the Vermilion Bay WTP (1,360 m<sup>3</sup>/day). The maximum daily flow rate in 2018 was 404 m<sup>3</sup>/day, which represented 29.7 % of the rated capacity of the Vermilion Bay WTP. The maximum day flow was due to high usage on an extreme heat day in August 2018. The reader is asked to consult **Appendix B** for a complete summary of 2018 flow data.





There was an increase in the amount of treated water supplied in 2018 when compared to the previous calendar year. In 2017, 60931  $m^3$  of treated water was supplied to users of the Vermilion Bay DWS, compared to 68894  $m^3$  in 2018. This represents a 11.5 % increase in the amount of treated water supplied to the community. The reader is asked to consult **Appendix B** for a summary of historical flow data.

**Note:** The recirculation of treated water via pressure relief valves located downstream of the treated water (distribution) flowmeter had previously resulted in inaccurate estimates with respect to the amount of water being supplied to the community. For this reason, the values for total treated water flow and average treated water daily flow were derived from actual transfer flows through the GAC filter units. In this way, such flows were not derived from data collected from the treated water (distribution) flowmeter.

# **Chemicals**

### **Chemical Consumptions**

Usage of lime in recent years is associated with our corrosion control measures intended to reduce lead concentrations in premise plumbing. These measures have proven effective in controlling lead release, and it is reasonable to expect that future lime dosages will be similar to those encountered in 2014 and 2015.

The table below summarizes all the water treatment chemicals used during the reporting period and the previous 8 years with their consumption data. All chemicals used in the treatment process are NSF 60 certified for use in potable water, as required by system approvals.

|      | •                        |                             |                         |                             |                          |                             |                         |                                          |
|------|--------------------------|-----------------------------|-------------------------|-----------------------------|--------------------------|-----------------------------|-------------------------|------------------------------------------|
|      | Lir                      | me                          | Poly alumin             | um chloride                 | Poly                     | rmer                        | Sodium hy               | /pochlorite                              |
| Year | Quantity<br>Used<br>(kg) | Average<br>Dosage<br>(mg/L) | Quantity<br>Used<br>(L) | Average<br>Dosage<br>(mg/L) | Quantity<br>Used<br>(kg) | Average<br>Dosage<br>(mg/L) | Quantity<br>Used<br>(L) | Average<br>Dosage <sup>1</sup><br>(mg/L) |
| 2010 | 287                      | 3.5                         | 4394                    | 21.7                        | 13.4                     | 0.16                        | 2262                    | 3.86                                     |
| 2011 | 462                      | 6.0                         | 4306                    | 22.5                        | 7.6                      | 0.10                        | 2256                    | 4.25                                     |
| 2012 | 417                      | 5.8                         | 3418                    | 18.9                        | 7.0                      | 0.10                        | 2469                    | 5.09                                     |
| 2013 | 464                      | 6.9                         | 3375                    | 20.2                        | 4.4                      | 0.07                        | 2548                    | 7.75                                     |
| 2014 | 435                      | 6.3                         | 3948                    | 22.6                        | 5.0                      | 0.07                        | 2633                    | 5.67                                     |
| 2015 | 276                      | 4.2                         | 3843                    | 23.1                        | 4.6                      | 0.07                        | 2309                    | 5.17                                     |
| 2016 | 331                      | 4.8                         | 3924                    | 22.8                        | 4.7                      | 0.07                        | 2350                    | 5.17                                     |
| 2017 | 444                      | 6.0                         | 4242                    | 22.7                        | 5.0                      | 0.07                        | 2812                    | 5.46                                     |
| 2018 | 330                      | 5.5                         | 4966                    | 23.5                        | 6.0                      | 0.07                        | 3144                    | 5.48                                     |

#### **Chemical Consumptions & Average Dosages**

1. GAC transfer volumes (as opposed to raw water volumes) are used in the average dosage calculations for sodium hypochlorite. Using such volumes provides a better indication of applied dosages. Discrepancies in the reported dosages between this and previous Annual Reports can be attributed to using raw water volumes in such calculations.

### **COMPLIANCE**

### **Ensuring Compliance**

The Municipality of Machin operates the Vermilion Bay Drinking Water System, and must comply with legislative and regulatory requirements in addition to the terms and conditions of a number of site-specific system License and approvals. Staffing is maintained at levels to ensure that adequate numbers of trained and licensed personnel are available for proper operations, during emergency or upset conditions, for vacation/sick relief, or to deal with equipment breakdown. Emergency response procedures and operations manuals are established and located in the appropriate facilities, and are available to all staff members. Operations manuals include information necessary for the day-to-day operation and maintenance of the treatment and distribution systems, as well as information that may be required to be accessed quickly for various purposes. Emergency response procedures include information that may be required for proper operation of the system during emergency or upset conditions, and contains items such as emergency plans and contact lists.

The operational strategy of the Municipality of Machin includes ensuring that permits and approvals are in place, ensuring efficient maintenance and operations, and ensuring that the quality of water supplied to its customers meets or exceeds the minimum requirements as set out in the *Safe Drinking Water Act*. It is also our responsibility to ensure that permissible flow rates are not exceeded. Flow measuring devices for measuring the amount of water taken and the amount of water supplied are calibrated annually. Accuracy in these measurements ensures that treatment chemicals are precisely applied and that flows do not exceed the capacity at which the system is designed to be effective. These flows are recorded to provide current and historical information for decision making purposes, in addition to being used by the Ministry of the Environment and Climate Change to review treatment operations.

Water quality analyzers are in place to continuously monitor water quality after critical treatment processes. Each filter is equipped with a filter effluent turbidity analyzer which monitors the number of suspended particles in the water leaving the filter. A chlorine residual analyzer continuously monitors the free chlorine residual at a point where primary disinfection is complete. Each piece of equipment is equipped with an alarm indicating adverse water quality, and is maintained in accordance with manufacturer's recommendations. Additionally, a water sampling program is conducted to exceed the minimum requirements of O. Reg. 170/03 under the *Safe Drinking Water Act*. Raw water sampling is conducted to give operational staff the information required to effectively operate the treatment process, and samples are collected throughout the process to determine the effectiveness of treatment at each stage. Treated and distribution system sampling provide information regarding the quality of water delivered to consumers. All of these samples are analyzed by licensed staff or by an accredited laboratory.

### **Compliance with System Approvals**

The Municipal Drinking Water Licence for the Vermilion Bay DWS requires that effluent discharged into the natural environment has an annual average total suspended solids concentration below 15 mg/L. This effluent is returned to Eagle Lake, and originates from the water consumed for plant process purposes (such as filter backwashing, clarifier "desludging", and filter rinsing-to-waste). In 2017, the annual average concentration for decant effluent total suspended solids was 6.26 mg/L. The annual average concentration calculation assumes that sample results found to be below the lower detectable limit are equivalent to that lower detectable limit of 2 mg/l.

# **COMPLIANCE (continued)**

### **Incidents of Non-Compliance**

There were two incidents of non-compliance in 2018. On February 9, 2018, there was a loss of continuous monitoring Trending of filter effluent turbidity and treated chlorine residual from the SCADA system. Continuous monitoring trending was also lost on August 15, 2018. During both these events, water was sent to the distribution and consumers. In these cases where there is a loss of continuous Trend monitoring the owner or operating authority is still required to continuously monitor treated chlorine residual and filter effluent turbidity however without trending there is no way of verifying operation of the continuous monitoring equipment. Relief from monitoring may be granted by the Ministry if requested. Both of these incidents were reported to NWHU and it was determined that a BWA was not required however the operator should have also contacted the MOECC and requested a relief from continuous sampling.

### **APPENDIX A: WATER QUALITY 2017**

### **Microbiological Parameters 2018**

| Parameter (Sample Type)        | Units     | Number of<br>Samples | Minimum | Maximum | ODWQS <sup>1</sup> | Compliant<br>ODWQS |
|--------------------------------|-----------|----------------------|---------|---------|--------------------|--------------------|
| E. Coli (Raw)                  | MPN/100mL | 52                   | 0       | 9       |                    |                    |
| E. Coli (Treated)              | p/a/100mL | 52                   | absent  | Absent  | not detectable     | $\checkmark$       |
| E. Coli (Distribution)         | p/a/100mL | 104                  | absent  | Absent  | not detectable     | $\checkmark$       |
| Total Coliforms (Raw)          | MPN/100mL | 52                   | 0       | <2420   |                    |                    |
| Total Coliforms (Treated)      | p/a/100mL | 52                   | absent  | Absent  | not detectable     | $\checkmark$       |
| Total Coliforms (Distribution) | p/a/100mL | 104                  | absent  | Absent  | not detectable     | $\checkmark$       |
| HPC (Treated)                  | CFU/mL    | 52                   | 0       | 64      |                    |                    |
| HPC (Distribution)             | CFU/mL    | 104                  | 0       | 2       |                    |                    |

1. ODWQS = Ontario Drinking Water Quality Standard; a value above this threshold is considered to be an exceedance.

#### Chemical and Physical Parameters (In-House) 2018

| Parameter                   | Units      | Number of<br>Samples | Minimum <sup>1</sup> | Maximum <sup>1</sup> | Annual<br>Average <sup>3</sup> | Complian<br>t ODWQS |
|-----------------------------|------------|----------------------|----------------------|----------------------|--------------------------------|---------------------|
| Turbidity (Filter #1/#2)    | NTU        | Continuous           | 0.052/0.051          | 0.069/0.068          | 0.059/0.059                    | ✓                   |
| Turbidity (Treated)         | NTU        | Continuous           | 0.071                | 0.252                | 0.100                          | $\checkmark$        |
| Residual Free Chlorine      | mg/L       | Continuous           | 1.02                 | 1.20                 | 1.13                           | $\checkmark$        |
| pH (Treated)                | pH units   | 273                  | 7.0                  | 7.4                  | 7.2                            | ✓                   |
| Total Alkalinity (Treated)  | mg/L CaCO₃ | 274                  | 12.7                 | 18.8                 | 16.6                           | ✓                   |
| Residual Aluminum (Treated) | mg/L       | 273                  | 0.009                | 0.020                | 0.014                          | $\checkmark$        |

1. The minimum and maximum values for the parameters of Turbidity (Treated), pH (Treated), Total Alkalinity (Treated), and Residual Aluminum (Treated) are given as minimum and maximum monthly averages.

2. Maximum values for Distribution turbidity are associated with fire flows.

3. Annual averages are the averages of all in-house analyses conducted within the year for a given parameter.

### **Inorganic Parameters 2018**

#### Nitrate & Nitrite 2017

| Parameter<br>(Treated Water) | Units | Result            | ODWQS           | Compliant<br>ODWQS |
|------------------------------|-------|-------------------|-----------------|--------------------|
| Antimony                     | ug/L  | <0.60             | 6               | ✓                  |
| Arsenic                      | ug/L  | < 1.0             | 25              | $\checkmark$       |
| Barium                       | ug/L  | <10               | 1000            | $\checkmark$       |
| Boron                        | ug/L  | <50               | 5000            | $\checkmark$       |
| Cadmium                      | ug/L  | <0.10             | 5               | $\checkmark$       |
| Chromium                     | ug/L  | <1.0              | 50              | $\checkmark$       |
| Fluoride                     | mg/L  | <0.030            | 1.5             | $\checkmark$       |
| Mercury                      | ug/L  | <0.10             | 1               | $\checkmark$       |
| Selenium                     | ug/L  | <1.0              | 10              | $\checkmark$       |
| Sodium                       | mg/L  | 6.73 <sup>1</sup> | 20 <sup>2</sup> | $\checkmark$       |
| Uranium                      | ug/L  | <2.0              | 20              | ✓                  |

1. Treated water must be tested for sodium concentrations once every 5 years. This most recent result pertains to a sample collected on February 3, 2015.

 This value for the parameter Sodium is not associated with a Standard as prescribed in O. Reg. 169/03, although an exceedance of this value is associated with reporting requirements and corrective actions.

| Sample Date<br>(2017) | Nitrate<br>Result<br>(mg/L) | Nitrite<br>Result<br>(mg/L) | Nitrate<br>+ Nitrite<br>(mg/L) | Compliant<br>ODWQS |
|-----------------------|-----------------------------|-----------------------------|--------------------------------|--------------------|
| Feb 12                | 0.070                       | <0.010                      |                                | $\checkmark$       |
| May 15                | < 0.036                     | <0.010                      |                                | $\checkmark$       |
| Sept 6                | <0.021                      | <0.010                      |                                | $\checkmark$       |
| Nov 6                 | <0.020                      | <0.010                      |                                | $\checkmark$       |
| ODWQS (mg/L)          |                             |                             |                                |                    |

# APPENDIX A: WATER QUALITY (continued)

### Organic Parameters 2018

| Parameter<br>(Treated Wa            | ater)                          | Result (ug/L)                      | ODWQS<br>(ug/L)                 | Compliant<br>ODWQS | Parame<br>(Treate        | ter<br>d Water)                 |                                 | Result<br>(ug/L)             | ODWQS<br>(ug/L)     | Compliant<br>Compliant |
|-------------------------------------|--------------------------------|------------------------------------|---------------------------------|--------------------|--------------------------|---------------------------------|---------------------------------|------------------------------|---------------------|------------------------|
| Alachlor                            |                                | <0.10                              | 5                               | $\checkmark$       | Diquat                   |                                 |                                 | <1.0                         | 70                  | $\checkmark$           |
| Atrazine + N<br>metabolites         | N-dealkylated                  | <0.20                              | 5                               | $\checkmark$       | Diuron                   |                                 |                                 | <1.0                         | 150                 | ~                      |
| Azinphos-me                         | ethyl                          | <0.10                              | 20                              | $\checkmark$       | Glyphos                  | sate                            |                                 | <5.0                         | 280                 | $\checkmark$           |
| Benzene                             |                                | <0.50                              | 5                               | $\checkmark$       | 2 methy                  | yl-4-chlorophen                 | oxy acid (MCPA)                 | <0.20                        | 100                 | $\checkmark$           |
| Benzo(a)pyr                         | rene                           | <0.010                             | 0.01                            | $\checkmark$       | Malathi                  | on                              |                                 | <0.10                        | 190                 | $\checkmark$           |
| Bromoxynil                          |                                | <0.20                              | 5                               | $\checkmark$       | Metolad                  | chlor                           |                                 | <0.10                        | 50                  | $\checkmark$           |
| Carbaryl                            |                                | <0.20                              | 90                              | $\checkmark$       | Metribu                  | Izin                            |                                 | <0.10                        | 80                  | $\checkmark$           |
| Carbofuran                          |                                | <0.20                              | 90                              | $\checkmark$       | Monoch                   | lorobenzene                     |                                 | <0.50                        | 80                  | $\checkmark$           |
| Carbon Tetr                         | rachloride                     | <0.5                               | 5                               | $\checkmark$       | Paraqua                  | at                              |                                 | <1.0                         | 10                  | $\checkmark$           |
| Chlorpyrifos                        | 5                              | <0.10                              | 90                              | $\checkmark$       | Pentach                  | nlorophenol                     |                                 | <0.50                        | 60                  | $\checkmark$           |
| Diazinon                            |                                | <0.10                              | 20                              | $\checkmark$       | Phorate                  | 2                               |                                 | <0.10                        | 2                   | $\checkmark$           |
| Dicamba                             |                                | <0.20                              | 120                             | $\checkmark$       | Piclorar                 | n                               |                                 | <0.20                        | 190                 | $\checkmark$           |
| 1,2-Dichloro                        | obenzene                       | <0.50                              | 200                             | $\checkmark$       | Polychl                  | orinated Biphen                 | yls (PCBs)                      | <0.035                       | 3                   | $\checkmark$           |
| 1,4-Dichloro                        | obenzene                       | <0.50                              | 5                               | $\checkmark$       | Promet                   | ryne                            |                                 | <0.10                        | 1                   | $\checkmark$           |
| 1,2-Dichloro                        | pethane                        | <0.50                              | 5                               | $\checkmark$       | Simazin                  | e                               |                                 | <0.10                        | 10                  | $\checkmark$           |
| 1,1-Dichloro                        | bethylene                      | <0.50                              | 14                              | $\checkmark$       | Terbufo                  | )S                              |                                 | <0.20                        | 1                   | $\checkmark$           |
| Dichloromet                         | thane                          | <5.00                              | 50                              | $\checkmark$       | Tetrach                  | loroethylene                    |                                 | <0.50                        | 30                  | $\checkmark$           |
| 2,4 -Dichlor                        | ophenol                        | <0.30                              | 900                             | $\checkmark$       | 2,3,4,6                  | -Tetrachlorophe                 | enol                            | <0.50                        | 100                 | $\checkmark$           |
| 2,4-Dichloro<br>acid                | opheny acetic                  | 110.6                              | 130                             | $\checkmark$       | Triallat                 | e                               |                                 | <0.10                        | 230                 | ~                      |
| Diclofop-me                         | ethyl                          | <0.20                              | 9                               | $\checkmark$       | Trichlo                  | roethylene                      |                                 | <0.50                        | 5                   | ~                      |
| Dimethoate                          |                                | <0.10                              | 20                              | $\checkmark$       | 2,4,6-T                  | richlorophenol                  |                                 | <0.50                        | 5                   | ✓                      |
|                                     |                                |                                    |                                 |                    | Triflura                 | lin                             |                                 | <0.10                        | 45                  | $\checkmark$           |
|                                     |                                |                                    |                                 |                    | Vinyl Cl                 | nloride                         |                                 | <0.20                        | 2                   | 1                      |
|                                     | Trih                           | alomethanes 20                     | 18                              |                    |                          |                                 |                                 |                              |                     |                        |
| Sample Date<br>(2018)               | Total THMs<br>Result<br>(ug/L) | 2017 Annual 2<br>Average<br>(ug/L) | 016 Annual<br>Average<br>(ug/L) | Av                 | Annual<br>erage<br>ıg/L) | 2014Annual<br>Average<br>(ug/L) | 2013Annual<br>Average<br>(ug/L) | ODWQS <sup>1</sup><br>(ug/L) | Complian<br>t ODWQS |                        |
| Feb 12<br>May 22<br>Aug 7<br>Nov 26 | 28.8<br>28.4<br>45.5<br>28.0   | 46.8                               | 51.8                            | 5                  | 4.0                      | 72.1                            | 56.4                            | 100                          | $\checkmark$        |                        |
| Average                             | 21.3                           |                                    |                                 |                    |                          |                                 |                                 |                              | •                   |                        |
|                                     |                                |                                    |                                 |                    |                          |                                 |                                 |                              |                     |                        |

1. ODWQS = Ontario Drinking Water Quality Standard; a value above this threshold is considered to be an exceedance.

### **APPENDIX B: FLOW STATISTICS**

| Month | Total Raw<br>Water Flow | Total GAC<br>Treated Water<br>Flow <sup>1</sup> | Average<br>Treated Water<br>Daily Flow <sup>1</sup> | Maximum<br>Treated Water<br>Daily Flow <sup>2</sup> | Plant<br>Efficiency<br>% | % Capacity<br>Performance<br>(Average<br>Flows) | % Capacity<br>Performance<br>(Maximum<br>Flows) |
|-------|-------------------------|-------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|--------------------------|-------------------------------------------------|-------------------------------------------------|
| Jan.  | 5718                    | 4901                                            | 171                                                 | 206                                                 | 86.5%                    | 12.5%                                           | 15.1%                                           |
| Feb.  | 5875                    | 4804                                            | 156                                                 | 198                                                 | 81.0%                    | 13.1%                                           | 59.6%                                           |
| March | 5359                    | 4300                                            | 143                                                 | 170                                                 | 80.9%                    | 10.5%                                           | 12.5%                                           |
| April | 5319                    | 4275                                            | 151                                                 | 172                                                 | 81.4%                    | 11.1%                                           | 12.7%                                           |
| May   | 6617                    | 5480                                            | 187                                                 | 254                                                 | 83.2%                    | 13.8%                                           | 18.7%                                           |
| June  | 8017                    | 6763                                            | 232                                                 | 350                                                 | 89.3%                    | 17.0%                                           | 25.7%                                           |
| July  | 10461                   | 8706                                            | 283                                                 | 401                                                 | 82.5%                    | 20.9%                                           | 29.5%                                           |
| Aug.  | 11272                   | 9759                                            | 302                                                 | 440                                                 | 86.0%                    | 22.6%                                           | 32.4%                                           |
| Sept. | 6645                    | 5554                                            | 198                                                 | 314                                                 | 84.4%                    | 14.5%                                           | 23.1%                                           |
| Oct.  | 5709                    | 4622                                            | 167                                                 | 234                                                 | 83.2%                    | 12.3%                                           | 17.2%                                           |
| Nov.  | 5949                    | 4761                                            | 175                                                 | 205                                                 | 80.1%                    | 12.9%                                           | 15.1%                                           |
| Dec.  | 6163                    | 4969                                            | 176                                                 | 220                                                 | 81.6%                    | 12.8%                                           | 16.2%                                           |
| Total | 83104                   | 68894                                           |                                                     |                                                     |                          |                                                 |                                                 |
| Avg.  | 6925                    | 5741                                            | 195                                                 | 264                                                 | 83.3%                    | 14.5%                                           | 23.2%                                           |

#### 2018 Flow Statistics (values expressed as m<sup>3</sup>)

1. The recirculation of treated water via pressure relief valves located downstream of the treated water (distribution) flowmeter had previously resulted in inaccurate estimates with respect to the amount of water being supplied to the community. For this reason, the values for total treated water flow and average treated water daily flow were derived from actual transfer flows through the GAC filter units. In this way, such flows were not derived from data collected from the treated water (distribution) flowmeter.

2. Values for maximum daily flows were derived from data collected from the treated water (distribution) flowmeter.

#### Flow Statistics by Year (values expressed as m<sup>3</sup>)

| Year | Total Raw<br>Water Flow | Total Treated<br>Water Flow <sup>1</sup> | Plant<br>Efficiency | % Change in Total<br>Raw Flow from<br>Previous Year | % Change in Total<br>Treated Flow from<br>Previous Year |
|------|-------------------------|------------------------------------------|---------------------|-----------------------------------------------------|---------------------------------------------------------|
| 2010 | 81,227                  | 70,388                                   | 86.7%               |                                                     |                                                         |
| 2011 | 76,863                  | 63,729                                   | 82.9%               | -5.4%                                               | -9.5%                                                   |
| 2012 | 72,418                  | 58,217                                   | 80.4%               | -5.8%                                               | -8.6%                                                   |
| 2013 | 67,038                  | 53,790                                   | 79.8%               | -8.0%                                               | -8.2%                                                   |
| 2014 | 69,506                  | 55,476                                   | 79.8%               | 3.7%                                                | 3.1%                                                    |
| 2015 | 66,008                  | 57,817                                   | 80.1%               | -5.0%                                               | 4.0%                                                    |
| 2016 | 68,360                  | 54,250                                   | 79.4%               | +3.6%                                               | -0.1%                                                   |
| 2017 | 74,446                  | 60,931                                   | 83.2%               | +8.9%                                               | +12.3%                                                  |
| 2018 | 83,104                  | 68,894                                   | 83.3%               | +11.6 %                                             | +13.1%                                                  |

 Estimates for total treated water annual flow were derived from actual transfer flows through the GAC filter units. Previous Annual Reports derived such estimates from the treated water (distribution) flowmeter, and as such there is discrepancy with the estimates provided above. The estimates provided in this Report are considered to be more accurate in depicting the actual amount of treated water supplied to the community.

### **APPENDIX C: ADVERSE WATER QUALITY INCIDENTS**

#### Incidents of Adverse Water Quality

Under O. Reg 170/03, reporting procedures and corrective actions are required for any instance where a sample result shows that a parameter used to measure water quality exceeded a certain standard, or where other observations indicate that the safety of the water cannot be guaranteed. The reader is asked to consult **Appendix C** for a summary of adverse water quality incidents which occurred in 2018.

| Summary of 2            | 018 Adverse Water Quality Incidents                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Incident<br>Description | AWQI 138765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Explanation             | Category 2 water main break at a fire hydrant, and subsequent low pressure in the distribution system.                                                                                                                                                                                                                                                                                                                                                                                                     |
| Corrective<br>Actions   | The Northwestern Health Unit imposed a Boil Water Advisory and directed the operating authority to repair the water main break and restore water pressure, following the MECP's Water main Disinfection Procedure, collect microbiological water samples, and to inform high risk facilities there is a boil water advisory. Water main repairs and pressure were restored, microbiological samples were taken and came back clear. The BWA was lifted on March 1, 2018 after all samples came back clear. |
| Incident<br>Description | AWQI#140300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Explanation             | A loss of coagulation and potentially improperly disinfected water was sent to users that occurred in the early morning of on July 7, 2018 and was discovered by operators when a high turbidity alarm was activated.                                                                                                                                                                                                                                                                                      |
| Corrective<br>Actions   | The Northwestern Health Unit advised the operating authority to issue a Boil Water Advisory at 09:00 for the community, to inform high risk facilities and post advisory information in public spaces, radio station etc. In the community, and to collect 2 sets of microbiological samples 24-48 hours apart to confirm the absence of bacteria in the distribution. Coagulation was restored and microbiological samples taken and came back clear. The BWA was lifted on July 12, 2018.                |
| Corrective<br>Actions   | The Northwestern Health Unit advised the operating authority to issue a Boil Water Advisory at 09:00 for the community, to inform high risk facilities and post advisory information in public spaces, radio station etc. In the community, and to collect 2 sets of microbiological samples 24-48 hours apart to confirm the absence of bacteria in the distribution. Coagulation was restored and microbiological samples taken and came back clear. The BWA was lifted on July 12, 2018.                |